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Background: Longitudinal magnetic resonance imaging (MRI) studies have become increasingly important to assess the
changes in brain morphology during normal aging and neurodegenerative disorders. However, the reliability of longitudi-
nal morphometric changes has not been fully evaluated.
Purpose: To examine the reliability of longitudinal (2-year) changes in brain morphology determined by longitudinal voxel-
based morphometry (VBM) in healthy elderly subjects, patients with mild cognitive impairment (MCI), and patients with
Alzheimer’s disease (AD).
Study Type: Retrospective analysis.
Subjects: Twenty-four healthy elderly subjects, 28 MCI patients, and 16 AD patients.
Field Strength/Sequence: A 1.5 T, magnetization-prepared rapid gradient-echo.
Assessment: Longitudinal (2-year) changes in gray matter volume determined by longitudinal VBM processing, and visual
assessment of image quality.
Statistical Tests: Intraclass correlation coefficient (ICC) and Kruskal–Wallis test.
Results: The ICC maps differed among the three groups. The mean ICC was 0.81 overall (0.86 for healthy elderly subjects,
0.75 for MCI patients, and 0.76 for AD patients). The reliability was good to excellent (ICC, 0.60–1.00) for 92% of voxels
(99% for healthy elderly subjects, 83% for MCI patients, and 83% for AD patients). The image quality differed significantly
among the three groups (P < 0.05).
Data Conclusion: These results indicate that the reliability of longitudinal gray matter volume changes by VBM is good to
excellent for most voxels. However, reliability may be affected by the disease, possibly due to differences in head motion
during imaging.
Evidence Level: 3
Technical Efficacy: Stage 1
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Introduction
Knowledge about the effects of normal aging and neurode-
generative disorders on brain morphology is mainly derived
from cross-sectional studies; however, extensive between-
subject variability in brain morphology reduces the sensitivity
for detecting changes in brain morphology.1 Within-subject
changes in morphology are usually smaller than between-
subject differences.1 Longitudinal studies, which can avoid

some of the problems of secular trends and between-subject
variation, have become increasingly important in assessing the
changes in brain morphology that occur during normal aging
and neurodegenerative disorders.2 Longitudinal studies limit
the variability in brain morphology attributable to between-
subject differences by using each subject as their own con-
trol.1 Despite this, the statistical power to detect changes in
brain morphology can be limited by measurement errors.1 To
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quantify the rates of changes in brain morphology from serial
MRI scans, it is important that the acquisitions at baseline
and at a later time are as similar as possible.3

Sufficient reliability is essential to use neuroimaging as a
potential biomarker of neurodegenerative disorders, especially
when monitoring the longitudinal changes associated with a
disorder and the effects of treatment.3 Although previous
studies have evaluated the reliability of structural T1-weighted
imaging and diffusion imaging,1,4–24 the reliability of the esti-
mated longitudinal changes in brain morphometry has not
been fully evaluated, and it is unclear whether neurological
disorders affect this reliability.

The purpose of this study was to examine the reliability
of longitudinal (2-year) changes in brain morphology deter-
mined by longitudinal voxel-based morphometry (VBM)
among healthy elderly subjects, patients with mild cognitive
impairment (MCI), and patients with Alzheimer’s dis-
ease (AD).

Materials and Methods
Subjects
This study used data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (available at http://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public–private partnership,
led by the Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI was to test whether serial MRI, positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of MCI and early AD. The ADNI was approved by the
institutional review boards of all participating sites. Written
informed consent was obtained from all participants.

This study used the ADNI 1 database to select subjects on
whom two back-to-back, structural T1-weighted imaging scans, on
1.5 T Philips scanners, had been performed twice (at screening and
a 2-year follow-up; two scans × two time-points per subject). Sub-
jects were selected by the following criteria: availability of two back-
to-back, structural T1-weighted imaging data, on 1.5 T Philips scan-
ners, at screening and 2-year follow-up. Subjects who had a lack of
imaging data were excluded. A total of 68 subjects (24 healthy con-
trol subjects, 28 patients with MCI, and 16 patients with AD) were
included in this study. The mean age (range) at screening was
75 � 7 years (healthy control subjects, 75 � 4 years [70–86 years];
patients with MCI, 76 � 7 years [56–87 years]; and patients with
AD, 73 � 8 years [60–85 years]). The mean scan interval (range)
was 2.1 � 0.1 years (healthy control subjects, 2.1 � 0.1 years [2.0–-
2.4 years]; patients with MCI, 2.1 � 0.1 years [2.0–2.5 years]; and
patients with AD, 2.1 � 0.1 years [2.0–2.4 years]).

Imaging Data Acquisition
MRI was performed using 1.5 T Philips scanners at multiple sites
using the ADNI 1.5 T imaging protocol. Various models of scanners
were used in the ADNI (for details, please refer to http://adni.loni.usc.
edu), but each subject underwent scans at screening and follow-up on
the same scanner. Structural T1-weighted images were acquired using
a three-dimensional magnetization-prepared rapid gradient-echo (MP-

RAGE) sequence in 170 sagittal slices (repetition time = 8.6 msec;
echo time = 4.0 msec; inversion time = 1000 msec; flip angle = 8�;
field of view = 240 × 240 mm; slice thickness = 1.2 mm with no gap;
acquisition matrix = 192 × 192; image matrix = 256 × 256;
reconstructed voxel size = 0.94 × 0.94 × 1.2 mm). The non-uniform
intensity of MP-RAGE images was corrected using the nonparametric
non-uniform intensity normalization algorithm N3.25–27

Image Quality
The quality of MP-RAGE images was subjectively graded as good,
adequate, or poor upon visual inspection. Three radiologists with
21 (H.T.), 10, and 2 years of experience in neuroradiology indepen-
dently evaluated the image quality in a blinded manner. In case of
disagreements, final evaluations were made by consensus. The MP-
RAGE images obtained at screening and the 2-year follow-up were
divided into pairs of higher-quality and lower-quality images for sub-
sequent analysis.

Image Processing
Images were mainly processed using statistical parametric mapping
(SPM) 12 software (http://www.fil.ion.ucl.ac.uk/spm) developed by
the Wellcome Department of Imaging Neuroscience, Institute of
Neurology, University College London, running in MATLAB 9.1
(Mathworks, Sherborn, MA) (Figure 1).

The longitudinal registration of pairs of MP-RAGE images
(obtained at screening and 2-year follow-up) was performed using
pairwise inverse-consistent alignment between the first and second
scan of each subject, incorporating a bias field correction to calculate
the mid-point average image and a map of the divergence of the
velocity fields (representing the rates of volumetric expansion/con-
traction) for each subject.28 The mid-point average images were seg-
mented into gray matter, white matter, and cerebrospinal fluid using
an integrated generative model (unified segmentation).29 The Inter-
national Consortium for Brain Mapping (ICBM) gray matter, white
matter, cerebrospinal fluid, bone, soft tissue, and air/background
templates were used as priors to segment the images.

The Diffeomorphic Anatomical Registration through
Exponentiated Lie Algebra (DARTEL) algorithm was used to spa-
tially normalize the segmented gray matter and white matter images,
and the images of longitudinal gray matter volume changes calcu-
lated by multiplying the gray matter images by the divergence
maps.30 The normalized images were modulated to correct the voxel
signal intensity for volume displacement during normalization and
hence reflect brain volume. The images were smoothed using an
8-mm kernel.

Statistical Analysis
The intraclass correlation coefficient (ICC) was calculated for each
voxel in the images of longitudinal gray matter volume changes
based on a single-measurement, absolute-agreement, two-way mixed-
effects model using MATLAB 9.1.31,32 Histogram analysis was per-
formed for each ICC map with a histogram bin width of 0.002 and
a range of −1.0 to 1.0. Only voxels with a volume > 0.05 (on all
gray matter images) were included in the ICC calculation and histo-
gram analysis. The ICC was interpreted using the criteria proposed
by Cicchetti et al,33 where an ICC of <0.40 is considered poor,
0.40–0.59 is fair, 0.60–0.74 is good, and 0.75–1.00 is excellent.
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The mean and SD images of longitudinal gray matter volume
changes were calculated from the pairs of high-quality images. The
distribution of gray matter atrophy was visually assessed by a radiolo-
gist with 21 years of experience in neuroradiology (H.T.), and con-
firmed by two radiologists with 10 and 2 years of experience in
neuroradiology.

To evaluate the effect of image quality on the reliability of
longitudinal volume changes, the Kruskal–Wallis test was used to
compare image quality among healthy control subjects, patients with
MCI, and patients with AD using SPSS Statistics version 22 (IBM,
Armonk, NY). The significance level was set at P < 0.05. The inter-
rater reliability of image quality ratings was assessed using the ICC
calculated based on a single-measurement, absolute-agreement, and
two-way mixed-effects model.

Results
ICC Maps and Histograms
Figure 2 shows the voxel-wise ICC maps of the longitudinal
(2-year) changes in gray matter volume. Figure 3 shows the
results of the histogram analysis (frequency polygons) of the
ICC maps. The ICC maps and their frequency polygons dif-
fered among the healthy control subjects, patients with MCI,
and patients with AD. The mean ICC was 0.81 overall (0.86
for healthy control subjects, 0.75 for patients with MCI, and
0.76 for patients with AD). The histogram peak was 0.90
overall (0.93 for healthy control subjects, 0.90 for patients
with MCI, and 0.95 for patients with AD). Table 1 summa-
rizes the distribution of the voxel-wise ICC estimates. Over-
all, the reliability was excellent (ICC, 0.75–1.00) for 76% of
voxels (91% for healthy control subjects, 63% for patients
with MCI, and 64% for patients with AD). The reliability
was good to excellent (ICC, 0.60–1.00) for 92% of voxels

(99% for healthy control subjects, 83% for patients with
MCI, and 83% for patients with AD).

Two-Year Changes in Gray Matter Volume
Figure 4 shows the mean longitudinal (2-year) changes in
gray matter volume for healthy control subjects, patients with
MCI, and patients with AD. Gray matter atrophy was more
extensive in patients with MCI or AD than in healthy control
subjects. Gray matter atrophy was particularly prominent in
the temporal lobe, including the hippocampus and para-
hippocampal cortex, as well as the posterior cingulate cortex
and precuneus. Figure 5 shows the standard deviations of lon-
gitudinal (2-year) changes in gray matter volume for healthy
control subjects, patients with MCI, and patients with
AD. As a whole, the variance of longitudinal volume changes
was larger in patients with MCI or AD than in healthy con-
trol subjects.

Image Quality
Figure 6 shows the distribution of image quality for healthy
control subjects, patients with MCI, and patients with
AD. The distribution of image quality (rated as good, ade-
quate, or poor) differed significantly among the three groups
(Kruskal–Wallis test, P < 0.05). The inter-rater reliability of
image quality ratings was good (ICC, 0.72).

Discussion
The reliability of the longitudinal (2-year) changes in gray
matter volume was good to excellent for most voxels. How-
ever, the reliability was worse in patients with MCI and
patients with AD than in healthy elderly subjects. The image
quality was significantly different among groups, with worse

FIGURE 1: Summary of longitudinal voxel-based morphometry (VBM) processing using statistical parametric mapping (SPM)
12 software. DARTEL, Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra.
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quality in patients with MCI or AD than in healthy elderly
subjects; the differences might be due to head motion. These
findings might explain the differences in the reliability of the
longitudinal (2-year) changes in gray matter volume among

healthy elderly subjects, patients with MCI, and patients
with AD.

This study used the longitudinal registration
implemented in SPM software to register baseline and follow-
up scans and calculate longitudinal volume changes.28 This
approach combines rigid alignment, diffeomorphic warping,
and differential intensity non-uniformity correction on a
within-subject template that evolves to yield an average of all
three of these aspects, and shows a symmetric, transitive con-
struction. Longitudinal studies of brain morphology generally
use longitudinal image processing, which reduces within-
subject variability by calculating the within-subject changes
integrating the information of scans at each time-point28,34;
this differs from cross-sectional studies, which treat each scan
at each time-point independently. Bias, however, can be
introduced by longitudinal image processing when scans from
different time-points are not treated equivalently and sym-
metrically as they undergo different processing steps. For
example, interpolation asymmetries occur when registering
follow-up scans to the baseline scan, while smoothing the
follow-up scans and preserving the unaltered baseline scan.35

FIGURE 2: Voxel-wise intraclass correlation coefficient (ICC) maps of longitudinal (2-year) changes in gray matter volume. HE: healthy
elderly; MCI: mild cognitive impairment; AD: Alzheimer’s disease.

FIGURE 3: Histograms (frequency polygons) of voxel-wise
intraclass correlation coefficient (ICC) maps of longitudinal
(2-year) changes in gray matter volume. HE: healthy elderly;
MCI: mild cognitive impairment; AD: Alzheimer’s disease.
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To prevent bias from affecting the estimated longitudinal
changes in brain morphology, it is essential to treat scans
obtained at different times symmetrically; otherwise, longitu-
dinal image processing can introduce more problems than it
solves.

AD is the most common cause of dementia in older
adults.36 It is an irreversible, progressive neurodegenerative

disorder, in which amyloid plaques and neurofibrillary tangles
accumulate in the brain, impairing axons, dendrites, and syn-
apses.37 Plaques are abnormal, dense deposits of amyloid β
peptides that accumulate between neurons and disrupt cell
function. Neurofibrillary tangles are abnormal aggregates of
hyperphosphorylated tau protein that accumulate inside neu-
rons, block neuronal transport systems, and affect neuronal

FIGURE 4: Mean longitudinal (2-year) changes in gray matter volume. HE: healthy elderly; MCI: mild cognitive impairment; AD:
Alzheimer’s disease.

FIGURE 5: Standard deviations of longitudinal (2-year) changes in gray matter volume. HE: healthy elderly; MCI: mild cognitive
impairment; AD: Alzheimer’s disease.

TABLE 1. Distribution of voxel-wise intraclass correlation coefficient (ICC) estimates of longitudinal (2-year) changes
in gray matter volume

ICC <0.40 (poor) (%) 0.40–0.59 (fair) (%) 0.60–0.74 (good) (%) 0.75–1.00 (excellent) (%)

Overall 2 6 16 76

HE 0 1 8 91

MCI 6 11 20 63

AD 6 11 19 64

HE: healthy elderly; MCI: mild cognitive impairment; AD: Alzheimer’s disease.
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synaptic communication.38 AD is characterized by behavioral
changes, memory loss, and deteriorating learning capacity,
resulting in cognitive and behavioral impairments that affect
and limit normal daily activities.37 Cortical atrophy occurs
earliest in the medial temporal lobe (entorhinal cortex and
hippocampus) and subsequently extends to the remaining
cortex along a temporal–parietal–frontal trajectory, while sen-
sorimotor and visual cortices are generally spared until later
stages.39 This topographical progression is correlated with dis-
ease severity and the appearance of clinical symptoms.39 In
early stages, marked cortical atrophy occurs in the medial
temporal lobe and posterior cingulate/retrosplenial cortex,
and is accompanied by milder atrophy in the orbitofrontal
cortex.39,40 The subsequent progression from incipient to
mild AD is associated with widespread and marked cortical
atrophy, affecting broad areas of the lateral temporal cortex,
dorsal parietal, and frontal cortex.39,40 In the present study,
longitudinal VBM detected longitudinal gray matter atrophy
in similar regions.

This study found that the reliability of the longitudi-
nal (2-year) changes in gray matter volume differed among
healthy elderly subjects, patients with MCI, and patients
with AD. Head motion is a key contributor to the within-
subject variability in a variety of neuroimaging modali-
ties.41,42 Although head motion cannot be directly mea-
sured during structural T1-weighted imaging, it impacts
on image quality.42 In the present study using ADNI data,
head motion could not be directly measured and instead
evaluated in terms of image quality. The image quality was
significantly different among healthy elderly subjects,
patients with MCI, and patients with AD, and was worse
in patients with MCI or AD than in healthy elderly sub-
jects. These results suggest that head motion may influ-
ence the reliability of the longitudinal changes in gray
matter volume in healthy elderly subjects, patients with
MCI, and patients with AD.

In this study, the variance of longitudinal (2-year)
changes in gray matter volume was overall larger in patients

with MCI or AD than in healthy elderly subjects. By defini-
tion, a larger variance between subjects compared with mea-
surement error results in larger ICC. Therefore, the larger
variance of longitudinal volume changes could not explain
the lower ICC in patients with MCI and AD.

Limitations
This study has some limitations. First, the condition of the
subjects might change during the 2-year follow-up period.
Longitudinal studies of brain morphometry usually have
follow-up periods of 1–2 or more years. To evaluate the
reliability of longitudinal morphometric changes deter-
mined by longitudinal voxel-based morphometry under
realistic conditions, we decided to use scans obtained at
the 2-year interval. Second, head motion was evaluated in
terms of image quality. This may have a limited ability to
measure head motion compared with direct measurement.
Finally, the effect of site/scanner on longitudinal morpho-
metric changes was not evaluated. Although each subject
underwent scans at screening and follow-up on the same
scanner, the ADNI used various models of scanners at vari-
ous sites. The effect of site/scanner on longitudinal mor-
phometric changes might exist but is somewhat beyond the
scope of this study.

Conclusion
The results of this study indicate that the reliability of longi-
tudinal changes in gray matter volume by VBM are good to
excellent in most voxels, but the reliability may be affected by
the underlying disease. These differences may be due to dif-
ferences in head motion during imaging among healthy
elderly subjects, patients with MCI, and patients with AD.
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